Classe : 3 Année SG Année scolaire : 2010-2011

Matière : Mathématiques

Exercice 1 : (24 pts)

Chaque question a une seule réponse correcte. Choisir avec justification les réponses correctes.

Questions		Réponses possibles			
		Α	В	С	D
1	Soit $f(x) = \cos(2 \arcsin x)$ Simplifier $f(x)$	$2x^2 - 1$	$2x\sqrt{1-x^2}$	$\sqrt{1-4x^2}$	$1-2x^2$
2	$f(x) = \sin(\pi x) + \sqrt{x^2 + 1},$ $f'(0) = \cdots$	0	1	π	$1 - \sqrt{(1-\pi)^2}$
3	Un argument du nombre complexe z= (1+i)(sint-icost) est	$\frac{\pi}{4}-t$	$t-\frac{\pi}{4}$	$t + \frac{\pi}{4}$	$-t-\frac{\pi}{4}$
4	Soit A (-1 ; 3 ; 1) et B(3 ;1 ;5);l'équation du plan médiateur de [AB] est :	2x-y+2z-6=0	x-2y+2z-6=0	x-y+z-6=0	2x+y-2z-6=0
5	Soit $g(x) = \frac{2x}{x-1}$ et $h(x) = \sqrt{x-3}$ le domaine de définition de]1 ;3]	IR-{1}	[1;+∞[[1 ;3]
	hog est:			_	
6	Pour les vecteurs : \vec{a} (1;1;0), \vec{b} (-2;0;1) et \vec{c} (0;3;1) on a $\vec{a} \wedge (\vec{b} \wedge \vec{c}) =$	(6 ;6 ;-5)	(-6; 6; 5)	(-3 ;2 ;0)	(3 ;-2 ;0)

Exercice 2 : (24 pts)

On considère les points A (3; 2; 6), B (1; 2; 4) et C (4; -2; 5).

Soit le plan (Q) d'équation x + 2y + 2z - 3 = 0.

1) Montrer que le triangle ABC est rectangle. (4 pts)

2) Calculer la distance du point A à la droite (BC). (4 pts)

- 3) Trouver une équation du plan (P) déterminé par les points A, B et C. (4 pts)
- 4) Vérifier que (P) et (Q) sont perpendiculaires et calculer la distance de O à leur droite d'intersection (L). (4 pts)
- 5) Calculer le volume du tétraèdre OABC. En déduire la distance de O au plan (P). (4 pts)
- 6) On définit un point G par $3\overrightarrow{GO} + \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$. On note I le centre de gravité du triangle ABC; montrer que G est le milieu de [OI]. (4 pts)

Exercice 3: (24 pts)

Le plan complexe est rapporté à un repère orthonormé $(0; \vec{u}; \vec{v})$; on considère les points A et B d'affixes respectives z_A =2 et z_B =3.

Partie A.

1) On désigne par M_1 et M_2 les points d'affixes respectives :

$$z_1 = 2 + i\sqrt{2}$$
 et $z_2 = 2 - i\sqrt{2}$.

- a- Déterminer la forme algébrique du nombre complexe $\frac{z_1-3}{z_1}$. (3 pts)
- b- En déduire que le triangle OBM_1 est rectangle. (3 pts)
- 2) Démontrer géométriquement que les points O, B, M_1 et M_2 appartiennent à un même cercle (T) que l'on déterminera. (3 pts)

Partie B.

Soit f l'application qui à tout point M d'affixe z on associe le point M' d'affixe z' défini par $z'=z^2-4z+6$.

Soit (Γ) le cercle de centre A et de rayon $\sqrt{2}$.

Soit M un point de (Γ) tel que $(\vec{u}; \overrightarrow{AM}) = \theta$ où $-\pi < \theta \le \pi$.

- 1) Vérifier que l'affixe de M est $z = 2 + \sqrt{2}e^{i\theta}$. (3 pts)
- 2) Vérifier que $z' = 2 + 2e^{2i\theta}$ et que M' est situé sur un cercle (Γ') . (4 pts)
- 3) Soit D le point d'affixe $d = 2 + \frac{\sqrt{2} + i\sqrt{6}}{2}$ et soit D' le point associé à D.
 - a- Ecrire sous forme exponentielle le nombre complexe d-2 et en déduire que D appartient au cercle (Γ) . (4 pts)
 - b- Donner une mesure de l'angle $(\vec{u}; \overrightarrow{AD'})$ et montrer que le triangle OAD' est équilatéral. (4 pts)

Exercice 4: (24 points)

Soit f la fonction définie sur IR par : $f(x) = \arctan(x^2 + 1) + \arctan(\frac{1}{x^2 + 1})$.

- 1) a) Calculer f(0); $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$ (3 pts)
 - b) Quelle conjecture peux-tu former à propos de f(x)? (2 pts)
 - c) Calculer f'(x). En déduire que f(x) a une valeur constante que l'on déterminera. (3 pts)
 - d) Vérifier que $\arctan \frac{1}{5} + \arctan \frac{2}{3} = \frac{\pi}{4}$ (3 pts)
 - e) En déduire la valeur en radians de l'expression : E=arctan5 +arctan $(\frac{3}{2})$ (3 pts)
- 2) Soit la fonction g définie sur \mathbb{R} par :

$$g(x) = \arctan(2x) + \arctan(3x) - \frac{\pi}{4}$$

- a) Etudier les variations de g. En déduire que l'équation g(x)=0 admet une solution unique α . (4 pts)
- b) Vérifier que $0 < \alpha < 1$. (3 pts)
- c) Résoudre g(x) = 0. En déduire la valeur exacte de α . (3 pts)

Exercice 5 (8 pts)

On définit sur \mathbb{R} deux fonctions f et g définies par : $f(x) = x^3 + x^2 + x - 1$ et $g(x) = x^3 + 5x^2 - 11x + 8$.

- 1) Montrer que l'équation f(x) = 0 admet une racine unique k puis trouver une valeur approchée de k à 0.1 près par défaut. (3 pts)
- 2) Prouver que g(k) > 0. (2 pts)
- 3) Calculer $(f \circ g)'(1)$. (3 pts)

Exercice 6: (56 pts)

Partie A:

On considère la fonction g définie sur $]0; +\infty[$ par $g(x) = -2x^2 - 1 + lnx.$

1) Calculer g'(x) et étudier son signe. (4 pts)

2) Dresser le tableau de variations de g. (4 pts)

3) En déduire le signe de g(x). (4 pts)

Partie B:

Soit f la fonction définie sur]0; $+\infty$ [par $f(x) = 1 - 2x - \frac{lnx}{x}$.

On désigne par (C) sa courbe représentative dans le plan muni d'un repère orthogonal (R). Unités graphiques : 2 cm sur l'axe des abscisses et 1 cm sur l'axe des ordonnées.

- 1) a) Calculer la limite de f en 0. Interpréter graphiquement ce résultat. (4 pts)
 - b) Calculer la limite de f en $+\infty$. (4pts)
 - c) Démontrer que la droite (L) d'équation y = -2x + 1 est une asymptote à la courbe (C). (4pts)
 - d) Etudier la position relative de (C) et (L). (4 pts)
- 2) a) Calculer f'(x) et vérifier que $f'(x) = \frac{g(x)}{x^2}$. (4 pts)
 - b) Dresser le tableau de variations de f. (4 pts)
 - c) Ecrire une équation de la tangente (T) menée à (C) au point d'abscisse x=1 (4 pts)
- 3) Tracer (L), (T) et (C) dans le repère (R). (4pts)
- 4) Calculer la valeur exacte en cm^2 de l'aire S ; de la partie du plan limitée par la courbe (C), l'axe des abscisses et les droites d'équations x=1 et x=e. Donner la valeur arrondie au mm^2 près. (4 pts)
- 5) Soit h la fonction réciproque de f. Calculer h' (-1). (4 pts)
- 6) Soit K la fonction définie sur $]0; +\infty[$ par $K(x) = \ln(1+f^2(x))$. Calculer K'(1). (4 pts)

Bon travail

