I-(7 points)

Determination of a characteristic of a coil

In order to determine the resistance r of a coil of inductance $L = 0.032 \, H$, we connect it in series with a capacitor of capacitance $C = 160 \, \mu F$ across the terminals of a low frequency generator (LFG) delivering an alternating sinusoidal voltage. Take: $0.32 \, \pi = 1$.

The circuit thus carries an alternating sinusoidal current i.

An oscilloscope is connected so as to display the voltage u_g on the channel Y_1 , and the voltage across the coil u_L on the channel Y_2 .

We see on the screen of the oscilloscope a display of the waveforms represented in figure 2.

Let $S_{v_i} = 2.5V / div$ be the vertical sensitivity on channel Y_1 .

and S_{v_2} be the vertical sensitivity on channel Y_2 .

The voltage across the coil is given by: $u_L = 10\sin(100 \pi t)$

$$(u \text{ in } V \& t \text{ in } s).$$

- 1.Redraw figure (1) showing on it the connections of the oscilloscope.
- 2.a) Find the vertical sensitivity S_{v_2} on channel Y_2 .
 - b)Find the frequency of signal delivered by the LFG.
- 3.a)Calculate the phase difference between u_G and u_L . Which of them leads the other.
 - b)Deduce the expression of the voltage u_{AD} across the terminals of the generator as a function of time.
- 4.By supposing that $u_C = u_{AB} = U_m \sin(100\pi t + \phi)$. Applying the law of addition of voltages, and giving the time two particular values. Find the values of U_m and ϕ .
- 5.a) Deduce that the instantaneous expression of the current i as a function of time is given

by:
$$i = 0.5 \sin\left(100\pi t - \frac{\pi}{6}\right)$$
.

Find the value of r.

- 6. We keep the maximum value of u_g constant but we vary its frequency f; the effective value of the current in the circuit is maximum for certain value f_0 .
- a) What is the name of the physical phenomenon thus observed?
- b) Find the value of f_0 .
- c) The circuit is now equipped by a fuse that cannot with stand a current whose effective intensity exceed $400 \, mA$.

Show that it is not possible to visualize the preceding physical phenomenon.

II-(6 points)

Photons and vision

According to Planck-Einstein's Hypothesis:

«An electromagnetic radiation of frequency υ , is composed of energy particles called photons».

Given:

- $\times 1nm = 10^{-9} m$.
- $\times 1eV = 1.6 \times 10^{-19} J$.
- **X** The speed of light in vacuum $c = 3 \times 10^8 \, m/s$
- 1.a) What aspect of light, the previous statement, does it show evidence of?
 - b)State two physical properties of the photon.
 - c) What is meant by duality of light? Give a physical phenomenon that is interpreted basing on each aspect.
- 2.To study the relationship between the energy E of a photon and its frequency v, we measure the photon's energy of many electromagnetic radiations that are placed in the following table.

$\upsilon(\times 10^{14})Hz$	0.3	3.75	5	7.5	15
E(eV)	0.124	1.56	2.1	3.11	6.21

a)Plot the graph representing the variations of the energy of a photon as a function of the frequency v, by taking as a scale:

On the abscissas axis: $1cm = 1 \times 10^{14} Hz$.

On the ordinate axis : $1cm = 0.5 \ eV$

- b)Justify, basing on the graph plotted and by the means of two evidences, that the energy of a photon is proportional to the frequency v.
- c) Determine, in SI units, the value of this constant of proportionality, called Planck's constant h.
- d)Knowing that the spectrum of visible light in vacuum extends in the interval : $400 nm \le \lambda \le 750 nm$.
 - *i*)Find the range of frequencies of visible light.
 - *ii*)Indicate to which domain the radiations mentioned in the previous table belong , the visible, ultraviolet or infrared spectrum?

In what follows we consider that the Planck's constant h is equal to: $h = 6.64 \times 10^{-34} J$.

- 3.To start up a visual excitation, 100 photons at least must reach the retina whose area is $0.15 \times 10^{-9} \, m^2$ during a duration of $0.1 \, s$. The retina's surface holds 20 rods.
- a) What is the number of photons needed to provoke an excitation of a rod during this duration.
- b)*i*)Write the expression of a photon's energy in terms of $h, c \& \lambda_0$.
- *ii*) What is the power absorbed by a rod receiving a radiation whose wavelength is $\lambda_0 = 550 \, nm$.
- c) What must be the minimum power of a luminous source emitting this same radiation uniformly in all directions of the space in order to be visible from 10km.

III- (7 points)

Horizontal elastic pendulum and Earthquakes

Part A

Theoretical study

The horizontal elastic pendulum of the figure below is formed of a solid(S) of mass m = 100g and a spring of constant k = 10N/m. The center of mass G of (S) may move along a horizontal axis O, O as shown in Figure 1. The abscissa of G at any instant I during oscillations is I and its velocity is I and I the horizontal plane containing I is taken as the gravitational potential energy reference. The pendulum thus performs free undamped oscillations of amplitude I and I are I and I are I and I are I are I and I are I and I are I and I are I are I and I are I are I and I are I and I are I are I are I and I are I are I are I are I and I are I are I are I and I are I are I are I are I are I are I and I are I are I are I are I are I and I are I are I are I are I are I and I are I are I are I and I are I are I are I are I and I are I are I and I are I and I are I and I are I are I and I are I are I are I and I are I are I and I are I are I are I and I are I are I are I and I are I are I are I are I and I are I are I are I and I are I are I are I are I and I are I are I are I are I and I are I are I are I and I are I are I are I are I and I are I and I are I are I and I are I are I are I

- 1. Write the expression of the mechanical energy ME of the pendulum [(S), spring] as a function of m, k, x and y.
- 2. Derive the differential equation that describes the motion of the center of mass G.
- 3. a) Determine the expression of T_0 so that $x = x_m \cos\left(\frac{2\pi}{T_0}t\right)$ is the solution of this differential equation.
 - b) Deduce the value of the proper period T_0 .
- 4. Applying the principle of conservation of mechanical energy, find the speed of the box when it passes through the equilibrium position.

Part B

Functioning of a seismometer

A seismometer is a device used to detect and record any disturbance of Earth. It functions on the principle of a damped oscillator solid-spring connected to a building fixed to ground. The seismometers are sensitive to vertical and horizontal vibrations. We are interested to the functioning of a horizontal seismometer.

In fact a seismic signal can hold waves, that are produced at a point called epicenter, of which we study in particular two types P and S, having periods that extends from few hundredths of second to many minutes and the recording obtained is shown in Figure 2. The seismometer enters in resonance for a particular frequency. It acts equally as a damping system, necessarily to obtain a reliable restitution of the ground motion.

Figure 2

- 1. Indicate in this system: the exciter? The resonator?
- 2. By admitting that the damping is weak; for what period of the exciter, the resonance phenomenon takes place?

Note: without the phenomenon of resonance, the relative motion is very weak and the recording is not reliable.

- 3. To simplify the study we consider that the waves *P* and *S* are periodic as indicated in figure 2.
 - a) Which wave propagates faster P or S basing on the previous recording? Justify.
 - b) Observing the recording, specify the range of magnitude of the periods T, shown in the previous recording, of waves P and S is 10s, 1s or 0.1s from figure 2 above.
 - c) Calculate an approximate value of the solid mass m, during this Earthquake. The constant of spring $k = 100N.m^{-1}$.
- 4. During the seism, certain waves have frequencies very small to that of the waves *P* and *S*. How should we modify the mass *m* in order to obtain a reliable recording?

IV-

Variations of the period

The objective of this study is to find the parameters that effect on the duration of oscillation of a mechanical oscillator (elastic pendulum) whose oscillation takes an interval of time T.

A-Experimental study

In order to show the effects of the oscillations amplitude x_m , the mass m of the solid and the constant k of the spring on the duration of one oscillation of a free undamped horizontal elastic pendulum.

We perform many experiments, in each one factor is only modified x_m in the first, k in the second and k in the third then we measure each time, the duration Δt for 10 oscillations using a stopwatch.

- 1. Why we measure the duration of 10 oscillations instead of 1 only directly?
- 2. The curves below are obtained:

What is, with justification, the conclusion that can be drawn concerning the dependence of the proper period T on:

a)the amplitude x_m from figure 1?

b) the mass m from figure 2? Deduce the expression of T in terms of \sqrt{m} .

- c)the constant of elasticity *k* from figure 3?
- 3.By supposing that the proper period can be written in the form $T = A x_m^{\alpha} m^{\beta} k^{\gamma}$ where $A, \alpha, \beta \& \gamma$ are constants.
 - a) What must be the value of the constant α so that the expression of the period T is independent of the amplitude x_m ?

b) Verify that the unit of the constant of elasticity k in SI units is $kg.s^{-2}$.

c)Basing on dimensional study (units study) applied on the expression of the proper period.

Show that the value of $\gamma = -\frac{1}{2}$. Deduce the value of β ?

d)Knowing that the values of figure 2 are obtained when the constant of the spring k = 10N/m.

Deduce the value of the constant A.

B-Theoretical study

Consider a horizontal elastic pendulum formed of a solid(S) of mass m attached to a spring of constant k and of negligible mass; the other end of the spring is fixed to a support. The forces of friction are supposed to be negligible and the solid of center of mass G can move on a horizontal axis Ox.

When the solid is at rest, G coincides with the point O taken as origin of abscissa.

The solid is pulled from its equilibrium position by a distance x_m , and then released without initial velocity at the instant $t_0 = 0$. The horizontal plane passing through G is taken as a gravitational potential energy reference.

At any instant t, the abscissa of G is x and the algebraic measure of its velocity is $v = \frac{dx}{dt}$.

- 1. Write down the expressions of the mechanical energy of the system (Solid, spring, Earth) as a function of m, k, x and v.
- 2.a) Derive the second order differential equation that governs the motion of (S).
 - b) Knowing that $x = x_m \cos\left(\frac{2\pi}{T}t + \phi\right)$ is a solution of this differential equation, determine the expression of the natural period T as a function of m and k.
 - c)Compare this result to that obtained in A.3-d

