Subject: Answer key of physics mid year exam for third Secondary- G.S and L.S
Academic year: 2010-2011

I- 1) No friction with air \Rightarrow M.E is conserved $\left(0^{+}\right)$
$\mathrm{M} . E_{A}=\mathrm{M} . E_{B}$
$\mathrm{M} . E_{B}=\mathrm{K} . E_{B}+\mathrm{G} . \mathrm{P} . E_{B}$
M. $E_{B}=\frac{m_{1} V_{1}{ }^{2}}{2}=1.25 \mathrm{~J}$ (1/2)
$\mathrm{M} . E_{A}=\mathrm{K} . E_{A}+$ G.P. $E_{A} \Longrightarrow$
$1.25=m_{1} \mathrm{gL}+\frac{m_{A} V_{A}{ }^{2}}{2}\left(0^{+}\right) \Longrightarrow$
$V_{A}=3 \mathrm{~m} / \mathrm{s}(1 / 2)$
2) L.M is conserved $\Rightarrow \overrightarrow{p_{f}}=\overrightarrow{p_{l}}$
$m_{1} \overrightarrow{V_{1}}+m_{2} \overrightarrow{V_{2}}=m_{1} \overrightarrow{V_{1}^{\prime}}+m_{2} \overrightarrow{V_{2}^{\prime}} \Rightarrow$
$m_{1} \overrightarrow{V_{1}^{\prime}}+0.4\left(2 \overrightarrow{\imath^{\prime}}\right)=0.1(5 \vec{\imath})+0 \Rightarrow$
$\overrightarrow{V_{1}^{\prime}}=-3 \vec{\imath}(1 / 2) \quad\left(V^{\prime}{ }_{1}\right.$ in $\left.\mathrm{m} / \mathrm{s}\right)$
$\mathrm{K} . E_{f}=\frac{m_{1} V_{1}^{\prime}{ }_{1}{ }^{2}}{2}+\frac{m_{2} V^{\prime}{ }_{2}{ }^{2}}{2}=1.25 \mathrm{~J}$
$\mathrm{K} . E_{i}=\frac{m_{1} V_{1}{ }^{2}}{2}+\frac{m_{2} V_{2}{ }^{2}}{2}=1.25 \mathrm{~J}$
$\mathrm{K} . E_{f}=\mathrm{K} . E_{i} \Rightarrow$ Elastic collision (1)
3) $\overrightarrow{V_{1}^{\prime}}=-3 \vec{\imath} \Rightarrow$ Deviation to left $\left(0^{+}\right)$
M.E is conserved M. $E_{B}=\mathrm{M} . E_{B}$,
$\frac{m_{1} V_{1}^{\prime}{ }^{2}}{2}=m_{1} \mathrm{gh} \Rightarrow$
$\mathrm{h}=0.45 \mathrm{~m}\left(0^{+}\right)$
$\mathrm{h}=\mathrm{CB}-\mathrm{CH}=$
$\mathrm{h}=\mathrm{L}-\mathrm{L} \cos \alpha\left(0^{+}\right)$
$0.45=0.8-0.8 \cos \alpha$
$\Rightarrow \alpha=64^{\circ}(1 / 2)$

4) a) $\Delta \mathrm{M} \cdot \mathrm{E}=W_{\vec{f}} \Rightarrow \quad 0-\frac{m_{2} V_{2}^{\prime}{ }^{2}}{2}=-f . d \quad\left(0^{+}\right)$ $\mathrm{f}=0.16 \mathrm{~N}(1 / 2)$
b) G.P.E $=0\left(0^{+}\right)$
M.E $-\mathrm{M} . E_{0}=-\mathrm{f} . \mathrm{x}$
M.E $=-0.16 \mathrm{x}+0.8\left(0^{+}\right)$
K.E $=$ M.E $\left(0^{+}\right)$

II-1)
$M . E=\frac{1}{2} m V^{2}+\frac{1}{2} K x^{2}=K . E+E \cdot P \cdot E\left(0^{+}\right)$
2) $\frac{d(M . E)}{d t}=0 \Rightarrow x^{\prime \prime}+\frac{K}{m} x=0 \quad\left(0^{+}\right)$
$\Rightarrow x^{\prime \prime}+\omega_{0}^{2} x=0 \quad \omega_{0}=\sqrt{\frac{K}{m}} \quad\left(0^{+}\right)$,
$T=\frac{2 \pi}{\omega_{0}}=2 \pi \sqrt{\frac{m}{K}}$
$\left(0^{+}\right)$
3) $\omega_{0}=\sqrt{\frac{50}{0.5}}=10 \mathrm{rd} / \mathrm{s}$

$$
\begin{align*}
& x=x_{m} \sin \left(\omega_{0} t+\varphi\right) \\
& \frac{1}{2} m v_{0}^{2}=\frac{1}{2} K x_{m}^{2} \Rightarrow x_{m}=0.2 m \tag{1/2}\\
& V=\omega_{0} \mathrm{x}_{\mathrm{m}} \cos \left(\omega_{0} t \varphi\right) \quad V_{0}=\omega_{0} x_{m} \cos (\varphi)>0 \\
& t=o, x=0 \Rightarrow 0=x_{m} \sin (\varphi) \Rightarrow \\
& \sin \varphi=0 \Rightarrow \varphi=0 \text { or } \varphi=\pi \\
& \varphi=0 \Rightarrow V_{0}>0 \text { accepted }\left(0^{+}\right) \\
& \varphi=\pi \Rightarrow V_{0}<0 \text { rejected }\left(0^{+}\right) \\
& \Rightarrow x=0.2 \sin (10 t)\left(0^{+}\right)(x \text { in } m, t \text { in } s)
\end{align*}
$$

4) a) $S=S_{0}+\Delta S=S_{0}+$ L. $x=S_{0}+0.25 x \quad\left(0^{+}\right)$
$\emptyset=B \cdot S \cdot \cos \left(180^{\circ}\right)=-B\left(S_{0}+0.25 x\right)$
${ }^{\left(0^{+}\right)}$
$\varnothing=-0.4\left(S_{0}+0.25 x\right)\left(0^{+}\right)$
b) $e=-\frac{d \emptyset}{d t}=B L x^{\prime}=\operatorname{BLV}(1 / 2)$

$$
e_{0}=\text { B. L. } V_{0}=0.2 V(1 / 2)
$$

c) $I_{0}=\frac{e_{0}}{R}=0 \quad$ very large R (1/2)
d) when $\mathrm{R}=5 \Omega \Rightarrow I_{0}=\frac{0.2}{5}=0.04 \mathrm{~A}(1 / 2)$

The induced current I_{0} acts in such a way to oppose the cause producing $\mathrm{it} \Rightarrow$ The electromagnetic force $\overrightarrow{F_{0}}$ is opposite in direction to $\overrightarrow{V_{0}}$
In magnitude: $F_{0}=I_{0} . B . L \cdot \sin \left(\overrightarrow{I_{0}}, \vec{B}\right)$

$$
\begin{equation*}
F_{0}=4 \times 10^{-3} N \tag{1/2}
\end{equation*}
$$

The electromagnetic force $\overrightarrow{F_{e m}}$ acting on $M N$ is opposite to \vec{V} in direction \Rightarrow it damps the oscillations
\Rightarrow the oscillation of $M N$ is damped.
In order to produce S.H.M, we must exert on MN a driving force \vec{F} opposite to $\overrightarrow{F_{e m}} \cdot\left(0^{+}\right)$
The oscillation of MN is called driven oscillation. $\left(0^{+}\right)$
III- 1)
a) $U_{m_{1}}=2 \times 3=6 V\left(0^{+}\right), U_{m_{2}}=2 \times 1 \quad\left(0^{+}\right)$
$U_{m_{1}}>U_{m_{2}} \Rightarrow$ curve C_{1} represents $u_{G}\left(0^{+}\right)$
b) $U_{m_{2}}=$ R. $I_{m} \Longrightarrow$
$I_{m}=0.1 A \quad\left(0^{+}\right)$
$\varphi=2 \pi \frac{d}{D}=\frac{\pi}{3} \operatorname{rd}\left(0^{+}\right)$
u_{G} cuts t-axis before u_{R}
$\Rightarrow u_{G}$ leads i $\left(0^{+}\right)$
$\mathrm{T}=6 \times 2=12 \mathrm{mS}=0.012 \mathrm{~S}\left(0^{+}\right)$
$\omega=\frac{2 \pi}{T}=\frac{500 \pi}{3} \mathrm{rd} / \mathrm{s} \quad\left(0^{+}\right)$
$\mathrm{u}=6 \sin \left(\frac{500 \pi}{3} \mathrm{t}\right)\left(0^{+}\right), \mathrm{i}=0.1 \sin \left(\frac{500 \pi}{3} \mathrm{t}-\frac{\pi}{3}\right)\left(0^{+}\right)$
c) $P_{a v}=$ U.I. $\cos (\varphi)=0.15 \omega \quad(1 / 2)$
$P_{a v}=(\mathrm{R}+\mathrm{r}) I^{2} \Rightarrow \mathrm{r}=10 \Omega \quad(1 / 2)$
2)
a) current resonance $\left(0^{+}\right) \mathrm{LC} \omega_{0}{ }^{2}=1 \Rightarrow \mathrm{~L}=0.05 \mathrm{H}$
(1/2)
b) $U_{m}=(\mathrm{R}+\mathrm{r}) I_{m}{ }^{\prime} \Rightarrow I_{m}{ }^{\prime}=0.2 \mathrm{~A}\left(0^{+}\right)$
$i^{\prime}=0.2 \sin (200 \pi \mathrm{t})\left(0^{+}\right)$
c) $u_{C}=\frac{q}{C}=\frac{1}{C} \int i . d t=\frac{0.2}{50 \times 10^{-6}} \int \sin (200 \pi t)$
$u_{C}=-6.28 \cos (200 \pi t)\left(0^{+}\right)$
$u_{\text {coil }}=\mathrm{ri}+\mathrm{L} \frac{d i}{d t}=2 \sin (200 \pi \mathrm{t})+6.28 \cos (200 \pi \mathrm{t})$
$u_{\text {coil }}=U_{m(r, L)} \sin \left(\omega t+\varphi^{\prime}\right) \Longrightarrow$
Calc. $\tan \varphi^{\prime}=\frac{L \omega}{r}=3.14 \Longrightarrow$

$$
\varphi^{\prime}=1.26 \mathrm{rd}=72^{\circ} \quad(1 / 2)
$$

$U_{m(r, L)}=I_{m}{ }^{\prime} \sqrt{r^{2}+(L \omega)^{2}}$
$u_{\text {coil }}=6.6 \sin (200 \pi \mathrm{t}+1.26) \quad\left(0^{+}\right)$

IV-1)
a) $\mathrm{a}=\frac{m x+M(0)}{m+M}=\frac{m x}{m+M}=\frac{x}{4} \quad\left(0^{+}\right)$
b) $\mathrm{I}=I_{\text {rod }}+I_{m}=\frac{M L^{2}}{12}+\mathrm{m} x^{2}=\frac{1}{20}+0.2 x^{2}\left(0^{+}\right)$
c) i) $\mathrm{K} \cdot \mathrm{E}+\mathrm{G} \cdot \mathrm{P} \cdot \mathrm{E}=\mathrm{M} \cdot \mathrm{E}=\frac{I \theta{土^{2}}^{2}}{2}-\operatorname{mgh}\left(0^{+}\right)$, $\mathrm{h}=x \cos \theta$
M.E $=\frac{I \theta^{\prime}}{2}-0.2(10)(x \cos \theta) \Longrightarrow$
M.E $=\left(\frac{1}{40}+0.1 x^{2}\right) \theta^{\prime 2}-2 x \cos \theta$
M.E $=\left(\frac{1}{40}+0.1 x^{2}\right) \theta^{2}-2 x+x \theta^{2}$
ii) No friction \Rightarrow M.E is conserved \Rightarrow
$\frac{d M . E}{d t}=0\left(0^{+}\right), \mathrm{x}=\mathrm{constant} \Rightarrow$
$\theta^{\prime \prime}+\left(\frac{x}{\frac{1}{40}+0.1 x^{2}}\right) \theta=0$
Or $\theta^{\prime \prime}+\frac{(M+m) \cdot g \cdot a}{I} \theta=0$
Similar to $\theta^{\prime \prime}+\omega_{0}{ }^{2} \theta=0$
$\Rightarrow \omega_{0}=\sqrt{\frac{x}{\frac{1}{40}+0.1 x^{2}}}\left(0^{+}\right)$
$T_{0}=\frac{2 \pi}{\omega_{0}}=2 \pi \sqrt{\frac{\frac{1}{40}+0.1 x^{2}}{x}}=2 \pi \sqrt{\frac{1}{40}+\frac{x}{10}}$
iii) T_{0} is $\min \Rightarrow \frac{1}{40 x}+\frac{x}{10}$ is $\min \Rightarrow$
$\frac{1}{40 x}=\frac{x}{10} \quad$ (using derivative or other method)
$\Rightarrow x=0.5 \mathrm{~m} \quad(1 / 2)$
$T_{0(\text { min })}=2 S \quad\left(0^{+}\right), \pi^{2}=10$
iv) $2.5=2 \pi \sqrt{\frac{1}{40 x}+\frac{x}{10}} \Rightarrow$
$4 x^{2}-6.25 x+1=0 \quad\left(0^{+}\right)$
$\Rightarrow x=0.16 \mathrm{~m}<\frac{1}{2}$ (accepted)
$x=1.38 \mathrm{~m}$ (rejected) $\left(0^{+}\right)$
2)
a) $\mathrm{P} . \mathrm{E}=T . E_{P . E}+\mathrm{G} . \mathrm{P} . \mathrm{E}=\frac{1}{20} c \theta^{2}-m g \frac{L}{2} \cos \theta(1 / 2)$
P.E $=\frac{1}{2} C . \theta^{2}-\cos \theta=\frac{1}{2} C . \theta^{2}+\frac{1}{2} \theta^{2}-1$
P.E $=\frac{1}{2}(C+1) \theta^{2}-1\left(0^{+}\right)$
b) $\mathrm{M} . \mathrm{E}=\mathrm{K} . \mathrm{E}+\mathrm{P} . \mathrm{E}=\frac{1}{2} I \cdot \theta^{\prime 2}+\frac{1}{2}(C+1) \theta^{2}-1$
$\mathrm{M} . \mathrm{E}=\frac{1}{20} \theta^{\prime 2}+\frac{1}{2}(1+C) \theta^{2}-1$
No friction \Rightarrow M.E is conserved $\Rightarrow \frac{d M . E}{d t}=0$
$\Rightarrow \theta^{\prime \prime}+10(1+C) \theta=0(1 / 2)$
Similar to $\theta^{\prime \prime}+\omega_{0}^{2} \theta=0$
c) $\Rightarrow \omega_{0}=\sqrt{10(1+C)}$
$\Rightarrow T_{0}=\frac{2 \pi}{\omega_{0}}=2 \pi \sqrt{\frac{1}{10(1+C)}}$
d) $1.8=2 \pi \sqrt{\frac{1}{10(1+C)}} \Rightarrow \mathrm{C}=0.23$ S.I

