Subject: Answer key of physics mid year exam for third Secondary- G.S and L.S Academic year: 2010-2011

I- 1) No friction with air \Rightarrow M.E is conserved (0 ⁺) M. $E_A = M.E_B$ M. $E_B = K.E_B + G.P.E_B$ M. $E_B = \frac{m_1 V_1^2}{2} = 1.25 J$ (1/2) M. $E_A = K.E_A + G.P.E_A \Rightarrow$ 1.25= $m_1 gL + \frac{m_A V_A^2}{2}$ (0 ⁺) \Rightarrow $V_A = 3m/s$ (1/2)	$\begin{aligned} x &= x_m \sin(\omega_0 t + \varphi) \\ \frac{1}{2} m v_0^2 &= \frac{1}{2} K x_m^2 \implies x_m = 0.2m (1/2) \\ V &= \omega_0 x_m \cos(\omega_0 t \varphi) V_0 = \omega_0 x_m \cos(\varphi) > 0 \\ t &= o, x = 0 \implies 0 = x_m \sin(\varphi) \implies \\ \sin\varphi = 0 \implies \varphi = 0 \text{or } \varphi = \pi \\ \varphi &= 0 \implies V_0 > 0 \text{ accepted } (0^+) \\ \varphi &= \pi \implies V_0 < 0 \text{ rejected } (0^+) \\ \implies x = 0.2 \sin(10t) (0^+) (x \text{ in } m, t \text{ in } s) \end{aligned}$
2) L.M is conserved $\Rightarrow \overrightarrow{p_f} = \overrightarrow{p_i}$ $m_1 \overrightarrow{V_1} + m_2 \overrightarrow{V_2} = m_1 \overrightarrow{V'_1} + m_2 \overrightarrow{V'_2} \Rightarrow$ $m_1 \overrightarrow{V'_1} + 0.4(2 \overrightarrow{i'}) = 0.1(5 \overrightarrow{i}) + 0 \Rightarrow$ $\overrightarrow{V'_1} = -3 \overrightarrow{i} (1/2) (V'_1 \text{ in m/s})$ $K.E_f = \frac{m_1 V'_1^2}{2} + \frac{m_2 V'_2^2}{2} = 1.25 \text{J}$ $K.E_f = K.E_i \Rightarrow \text{Elastic collision (1)}$	4) a) $S = S_0 + \Delta S = S_0 + L$. $x = S_0 + 0.25x$ (0 ⁺) $\emptyset = B$. S . $\cos(180^\circ) = -B(S_0 + 0.25x)$ (0 ⁺) $\emptyset = -0.4(S_0 + 0.25x)(0^+)$ b) $e = -\frac{d\emptyset}{dt} = BLx' = BLV$ (1/2) $e_0 = B$. L . $V_0 = 0.2V$ (1/2) c) $I_0 = \frac{e_0}{R} = 0$ very large R (1/2)
3) $\overrightarrow{V'_{1}} = -3 \ \overrightarrow{i} \Rightarrow$ Deviation to left (0 ⁺) M.E is conserved M. $E_{B} = M.E_{B'}$ $\frac{m_{1}V'_{1}^{2}}{2} = m_{1}gh \Rightarrow$ h = 0.45m (0 ⁺) h = CB- CH = h = L-Lcos α (0 ⁺) 0.45= 0.8-0.8cos α $\Rightarrow \alpha = 64^{\circ}$ (1/2) 4) a) $\Delta M.E = W_{\overrightarrow{f}} \Rightarrow 0 - \frac{m_{2}V'_{2}^{2}}{2} = -f.d$ (0 ⁺) f=0.16N (1/2) b) G.P.E = 0 (0 ⁺) M.E - M.E_{0} = -f.x M.E = -0.16x + 0.8 (0 ⁺) K.E = M.E_{0} (0 ⁺)	d) when $R = 5\Omega \implies I_0 = \frac{0.2}{5} = 0.04 \text{ A}$ (1/2) The induced current I_0 acts in such a way to oppose the cause producing it \implies The electromagnetic force $\overrightarrow{F_0}$ is opposite in direction to $\overrightarrow{V_0}$ In magnitude: $F_0 = I_0. B. L. \sin(\overrightarrow{I_0}, \overrightarrow{B})$ $F_0 = 4 \times 10^{-3} N$ (1/2) The electromagnetic force $\overrightarrow{F_{em}}$ acting on MN is opposite to \overrightarrow{V} in direction \implies it damps the oscillations \implies the oscillation of MN is damped. In order to produce S.H.M, we must exert on MN a driving force \overrightarrow{F} opposite to $\overrightarrow{F_{em}}$. (0 ⁺) The oscillation of MN is called driven oscillation.(0 ⁺) III- 1) a) $U_m = 2 \times 3 = 6V$ (0 ⁺). $U_m = 2 \times 1$ (0 ⁺)
	$U_{m_1} > U_{m_2} \Longrightarrow$ curve C_1 represents $u_G (0^+)$ b) $U_{m_1} = \mathbf{P} [U_{m_2} \Longrightarrow$
$M.E = \frac{1}{2}mV^{2} + \frac{1}{2}Kx^{2} = K.E + E_{.P.E} (0^{+})$ $2) \frac{d(M.E)}{dt} = 0 \implies x^{"} + \frac{K}{m}x = 0 (0^{+})$ $\implies x^{"} + \omega_{0}^{2}x = 0 \qquad \omega_{0} = \sqrt{\frac{K}{m}} (0^{+}) ,$ $T = \frac{2\pi}{\omega_{0}} = 2\pi\sqrt{\frac{m}{K}} (0^{+})$ $3) \omega_{0} = \sqrt{\frac{50}{0.5}} = 10 \text{ rd/s} (0^{+})$	$ \begin{array}{c} \text{I}_{m} = 0.1A (0^{+}) \\ \mu = 2\pi \frac{d}{D} = \frac{\pi}{3} \operatorname{rd} (0^{+}) \\ u_{G} \text{ cuts t-axis before } u_{R} \\ \Rightarrow u_{G} \text{ leads i } (0^{+}) \\ \text{T} = 6 \times 2 = 12 \text{mS} = 0.012 \text{S} (0^{+}) \\ \omega = \frac{2\pi}{T} = \frac{500\pi}{3} \operatorname{rd/s} (0^{+}) \\ u = 6 \sin \left(\frac{500\pi}{3} \operatorname{t}\right) (0^{+}), \text{ i} = 0.1 \sin \left(\frac{500\pi}{3} \operatorname{t} - \frac{\pi}{3}\right) (0^{+}) \\ \text{c} P_{av} = (\text{R}+\text{r}) I^{2} \Rightarrow \text{r} = 10\Omega (1/2) \end{array} $

www.tarbaweya.org

2)
a) current resonance (0⁺)
$$LC\omega_0^2 = 1 \implies L = 0.05H$$

(1/2)
b) $U_m = (R+r) I_m' \implies I_m' = 0.2A (0^+)$
 $i' = 0.2\sin(200\pi t) (0^+)$
c) $u_c = \frac{q}{c} = \frac{1}{c} \int i. dt = \frac{0.2}{50 \times 10^{-6}} \int sin(200 \pi t)$
 $u_c = -6.28 \cos(200 \pi t) (0^+)$
 $u_{coil} = ri + L\frac{di}{dt} = 2\sin(200\pi t) + 6.28\cos(200\pi t)$
 $u_{coil} = U_m(r,L) \sin(\omega t + \varphi') \implies$
Calc. $\tan \varphi' = \frac{L\omega}{r} = 3.14 \implies$
 $\varphi' = 1.26rd = 72^\circ (1/2)$
 $U_{m(r,L)} = I_m' \sqrt{r^2 + (L\omega)^2}$
 $u_{coil} = 6.6\sin(200\pi t + 1.26) (0^+)$

IV-1)

a)
$$a = \frac{mx + M(0)}{m + M} = \frac{mx}{m + M} = \frac{x}{4} \quad (0^+)$$

b) $I = I_{rod} + I_m = \frac{ML^2}{12} + mx^2 = \frac{1}{20} + 0.2x^2 \quad (0^+)$
c) i) K.E +G.P.E = M.E = $\frac{I\theta t^2}{2} - mgh \quad (0^+)$,
h= $x \cos \theta$
M.E = $\frac{I\theta t^2}{2} - 0.2(10)(x \cos \theta) \implies$
M.E = $(\frac{1}{40} + 0.1x^2) \theta'^2 - 2x \cos \theta$
M.E = $(\frac{1}{40} + 0.1x^2) \theta'^2 - 2x + x\theta^2 \quad (1/2)$
ii) No friction \implies M.E is concerned \implies

11) No friction
$$\Rightarrow$$
 M.E is conserved \Rightarrow

$$\frac{dM.E}{dt} = 0 \ (0^+) \ , x = \text{constant} \Rightarrow$$

$$\theta'' + \left(\frac{x}{\frac{1}{40} + 0.1x^2}\right) \theta = 0 \quad (0^+)$$
Or $\theta'' + \frac{(M+m).g.a}{I} \theta = 0$
Similar to $\theta'' + \omega_0^2 \theta = 0$

$$\Rightarrow \omega_0 = \sqrt{\frac{x}{\frac{1}{40} + 0.1x^2}} \ (0^+)$$

$$T_0 = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{\frac{1}{40} + 0.1x^2}{x}} = 2\pi \sqrt{\frac{1}{40} + \frac{x}{10}} \ (1/2)$$

iii)
$$T_0$$
 is min $\Rightarrow \frac{1}{40x} + \frac{x}{10}$ is min \Rightarrow
 $\frac{1}{40x} = \frac{x}{10}$ (using derivative or other method)
 $\Rightarrow x=0.5m$ (1/2)
 $T_{0(min)} = 2S$ (0⁺), $\pi^2 = 10$
iv) $2.5 = 2\pi \sqrt{\frac{1}{40x} + \frac{x}{10}} \Rightarrow$
 $4x^2 - 6.25x + 1 = 0$ (0⁺)
 $\Rightarrow x = 0.16m < \frac{1}{2}$ (accepted) (1/2)
 $x = 1.38m$ (rejected) (0⁺)

2)
a) P.E=
$$T.E_{P.E} + G.P.E = \frac{1}{20}c\theta^2 - mg\frac{L}{2}\cos\theta$$
 (1/2)
P.E $= \frac{1}{2}C.\theta^2 - \cos\theta = \frac{1}{2}C.\theta^2 + \frac{1}{2}\theta^2 - 1$
P.E $= \frac{1}{2}(C+1)\theta^2 - 1$ (0⁺)
b) M.E = K.E +P.E $= \frac{1}{2}I \cdot \theta'^2 + \frac{1}{2}(C+1)\theta^2 - 1$
M.E $= \frac{1}{20}\theta'^2 + \frac{1}{2}(1+C)\theta^2 - 1$ (1/2)
No friction \Rightarrow M.E is conserved $\Rightarrow \frac{dM.E}{dt} = 0$
 $\Rightarrow \theta'' + 10(1+C)\theta = 0$ (1/2)
Similar to $\theta'' + \omega_0^2 \theta = 0$
c) $\Rightarrow \omega_0 = \sqrt{10(1+C)}$ (0⁺)
 $\Rightarrow T_0 = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{1}{10(1+C)}}$ (1/2)
d) $1.8 = 2\pi \sqrt{\frac{1}{10(1+C)}} \Rightarrow C = 0.23$ S.I (1/2)
 $M = h = \frac{L}{2} \cos\theta$
 $H = h = \frac{L}{2} \cos\theta$

www.tarbaweya.org

