I- (2 points)

In the table below, only one of the proposed answers to each question is correct. Write down the number of each question and give, with justification, the answer

corresponding to it.

N°	Questions	Answers			
		a	ь	C	d
	The particular solution of the differential equation				
1	$y' - \frac{1}{2}y = 0,$	$y=-2e^{\frac{x}{2}}$	$y=e^{\frac{x}{2}+1}$	y =2cosx – sinx	$y = \sqrt{x^2 - 3}$
	that verifies $y(-2) = 1$, is:				
2	$f(x) = 2\sin(\pi x + 2).$ The period of f is: $T =$	π	2	2π	$\frac{\pi}{2}$
3	The equation $2\ln x = \ln(2x)$ has:	2 roots	One root only	No roots	3 roots
4	If $f(x) = \ln \left -3x \right $; then $f'(x) =$	$\frac{3}{x}$	$-\frac{3}{x}$	$\frac{1}{ \mathbf{x} }$	$\frac{1}{\mathbf{x}}$
5	$e^{\frac{1}{2}\ln 9} \times e^{-\ln \frac{1}{3}} =$	e ³	6	$e^{\frac{3}{2}}$	9
6	$\cos^2(\frac{1}{2}\arccos x) =$	1+x 2	$1+\frac{x}{2}$	$\frac{1}{2}x$	$(1+x)^2$

II- (3 points)

Given (C_m) : $(m^2 - 1)x^2 + y^2 + 6my + 9 = 0$.

- 1) Discuss according to the values of m, the nature of (C_m).
- 2) Determine the elements of (C_2) (corresponding to m = 2).
- 3) Find the equations of the tangent and normal to (C_2) at $L(\frac{\sqrt{6}}{3};-1)$.
- 4) The tangent and normal cut (x'Ox) at T and N. Calculate $\overline{OT} \times \overline{ON}$. Page 1 of 4

III-(3 points)

In the complex plane referred to an orthonormal system (O; u; v), consider the points A, B, C and D of affixes $z_A = -2i$, $z_B = 4 - 2i$, $z_C = 4 + 2i$ and $z_D = 1$ respectively.

1) Locate the points A, B, C and D and specify the nature of triangle ABC.

- 2) Let f be the mapping which to every point M of affix z and distinct from A assigns a point M' of affix $z' = \frac{z-4-2i}{z+2i}$.
 - a) Determine the images of B and C under f.

b) Determine the set (δ) of points M' of affix z' such that |z|=1.

3) Prove that for every point M distinct from A and whose image by f is M' we have: M' ≠ D

$$\frac{\overrightarrow{DM'} \cdot \overrightarrow{AM}}{\overrightarrow{DM'} \cdot \overrightarrow{AM}} = 4\sqrt{2}$$

$$(\overrightarrow{u}; \overrightarrow{DM'}) + (\overrightarrow{u}; \overrightarrow{AM}) = \frac{5\pi}{4} \text{ rd.}$$

IV- (3 points)

To encourage national tourism, a tourist agency proposes week-ends of two days, and offers its customers three choices:

- Full-board week-end
- Half-board week-end
- Luxury week-end.

The agency published the following advertisement:

Choice Destination	Full-board	Half-board	Luxury
Mountain	150 000 LL	100 000 LL	200 000 LL
Beach	100 000 LL	75 000 LL	150 000 LL

This agency estimates that 65% of its customers choose mountains, and the others choose the beach; and that out of the customers to any destination 55% choose full-board and 30% choose half-board while the others choose luxury week-ends.

A customer is chosen at random and is interviewed.

Consider the following events:

A: « the interviewed customer has chosen the mountains».

B: « the interviewed customer has chosen the beach ».

C: « the interviewed customer has chosen full-board week-end ».

D: « the interviewed customer has chosen half-board week-end ».

S: « the interviewed customer has chosen the luxury week-end ».

- 1) a- Calculate the following probabilities: $P(A \cap C)$, $P(B \cap C)$ and P(C).
 - b- The interviewed customer had chosen full-board, what is the probability that he chose the beach?
- 2) Let X be the random variable that is equal to the amount paid to the agency by a customer.
 - a- Show that $P(X=150\ 000) = 0.41$ and determine the probability distribution for X.
 - b- Calculate the mean(expected value) E(X). What does the number thus obtained represent?
 - c- Estimate the sum received by this agency when it serves 200 customers.

V- (3 points) Consider, in an oriented plane, the direct square ABCD with center O such that $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2}$ (2 π).

- 1) Determine the nature of S and specify its ratio and its angle.
- 2) Designate by W the center of S.
 - a-Show that S(C) = D and that S(O) = B.
 - b- Construct the point W, specifying clearly the steps of this construction.
- 3) The plane is referred to an orthonormal system (A; AB, AD).
 - a- Write the complex form of S and deduce the affix of the center W.
 - b- Determine the image of the square ABCD under S.

VI- (6 points)

Part A

Let f be the function defined over IR by $f(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$.

Designate by (C) its representative curve in an orthonormal system (O; i; j).

- 1) Study the parity of f.
- 2) Show that, for all $x \in IR$, -1 < f(x) < 1.
- 3) a) Calculate $\lim_{x \to \infty} f(x)$ and $\lim_{x \to \infty} f(x)$.
 - b) Deduce the equations of the asymptotes to (C).
 - c) Study the variations of f and draw its table of variations.
 - d) Show that f admits, over IR, an inverse function f^1 . Determine the domain of definition of f^1 and calculate $f^1(x)$.

Part B

- 1) Determine an equation of the tangent (T) to (C) at the point of (C) of abscissa 0.
- 2) a) Show that for all numbers t, f'(t) = 1- [f(t)]².
 b)Bound f'(t).
 - c) For x being positive or zero, bound $\int_{0}^{x} f'(t)dt$.

Justify that $0 \le f(x) \le x$ and deduce the relative positions of (C) and (T).

- 3) B is a point of (C) of positive abscissa, determine B, knowing that the slope of the tangent to (C) at B is $\frac{1}{2}$.
- 4) Trace (C) and (T).
- 5) a) Show that f(x) can be written in the form $f(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$
 - b) Calculate the area of the domain limited by (C), the straight line of equation y = x and the two straight lines of equations x = 0 and x = 1.

Good Work