Midyear exam

I- (2.5points)

In the following table only one of the proposed answers to each question is correct, choose the correct answer and justify.

No	Question	Answer			
INO	Question	а	b	С	
1	Given the points : A(2,1,-1),B(3,0,1), C(2,-1,3)& D(0,0,a),one of the values of a so that the volume of ABCD =5 u^3 is:	a = -16	a = 16	a = 14	
2	The equation of Ellipse of focal vertices $A(4,0)$ and $A'(-2,0)$, and the distance between the directrices equal $=\frac{18}{\sqrt{5}}$	$4x^2 + 9y^2 - 8x - 32 = 0$	$\frac{(x-1)^2}{9} + y^2 = 1$	$\frac{(x-1)^2}{9} + \frac{y^2}{5} = 1$	
3	$\lim_{x \to -\infty} [\ln(e^{-2x} - 2e^{-x} + 1) + 2x] =$	-∞	+∞	0	
4	The equation of plane (Q) containing st line (d): $x = m - 1$, $y = 2m + 1$, z = -2m + 1 and perpendicular to plane(p)2x+y+2z-1=0, is:	2x+2y - <i>Z</i> +4=0	2x-2y- Z +4=0	2x-2y- z +5=0	

II- (3 points)

In the space of orthonormal system $(o, \vec{i}, \vec{j}, \vec{k})$, consider the point A (0,-1, 3) and the st. line (d) of equation: x = t, y = -t + 1, z = 1.

- 1) Show that : x + y + z 2 = 0 is the equation of the plane (P) determined by point A and st. line (d).
- 2) Find the equation of plane (Q) passing through A and perpendicular to (d), the deduce the coordinates of point H the orthogonal projection of A on (d).
- 3) Consider the circle(C) in plane (p) of center A and tangent to (d) .
- a) Calculate the radius of (C).
- b) Show that B (-1,-2, 5) is a point of circle (C) diametrically opposite to H, and write the equation of the tangent to circle (C) at B.
- 4) i) Show that the st. line of (Δ): $x = \lambda$, $y = \lambda 1$, $z = \lambda + 3$, is the axis of circle (C).
 - ii) Point E ($\sqrt{6}$, $\sqrt{6}$ 1, $\sqrt{6}$ + 3) belong to (Δ).

Show that HBE is equilateral triangle and calculate its area.

III- (3 points)

In the plane of orthonormal system x'ox, y'oy, consider the s. line (d) of equation x = 6And the midpoint M such that $\frac{OM}{MH} = \frac{1}{2}$, where H is the orthogonal projection of M on (d).

- 1) Show that the equation of (*C*) the set of *M* is written in the form: $3x^2 + 4y^2 + 12x - 36 = 0$
- Find the vertices of the focal axis, the vertices of the non focal axis, the other focus and draw (C).
- 3) *E* is the point of intersection of (*C*) with the y axis of positive ordinate. Find the equation of (*T*) the tangent to (*C*) at *E*.
- 4)
- a) Show that $I(\frac{6}{5}, \frac{12}{5})$ is the orthogonal projection of the point O on (T)
- b) Show that *I* belongs to the auxiliary circle of (*C*).

IV- (6points)

Consider the function g defined over $[-1, +\infty[$ by $: g(x) = \sqrt{x+1} - 1$ where (P_1) is its representative curve in an orthonormal system $(0, \vec{i}, \vec{j})$

Part A:

- 1. Calculate $\lim_{x \to +\infty} g(x)$, $\lim_{x \to +\infty} \frac{g(x)}{x}$, interpret.
- 2. Prove that g is increasing over $[-1, +\infty]$ and setup the table of variation of g.
- Calculate g(0), and deduce the sign of g(x) over [−1, +∞[
- 4. Draw (P₁).
- 5. Let I = [0, 3].
 - a. Prove that g(I) is included in I.
 - b. Prove that $|g'(x)| \le \frac{1}{2}$ for every $x \in I$, and prove that $|g(x)| \le \frac{1}{2}|x|$.
 - c. Consider the sequence (U_n) that is defined by: $U_0 = 1$ and for every $n \in \mathbb{N}$, $U_{n+1} = g(U_n)$.
 - i- Prove by mathematical induction that U_n belongs to I for every n.
 - ii- Prove that $|U_{n+1}| \leq \frac{1}{2}|U_n|$.
 - iii- Prove that $|U_n| \leq \frac{1}{2^n}$ and deduce the limit of U_n as n tends to $+\infty$.

PART B: For every point M(x, g(x)) on (P_1) consider its symmetric M'(x', y') with respect to the line of equation y = -1. The set of point of M' is the curve (P_2) , which is the representative curve of the function: $h(x) = -\sqrt{x+1} - 1$.

i. Draw (P_2) on the same system.

ii. Prove that $(P) = (P_1) \cup (P_2)$ is the representative curve of the set of points whose coordinates satisfy the expression : $y^2 + 2y - x = 0$

iii. Prove that this expression represents the equation of a parabola whose elements are to be determined.

iv. Find the equation of the normal to (P) at the point of ordinate 0.

<u>PARTC</u>: Let f be the function defined by $f(x) = \ln(g(x))$ where (C) is its representative curve in an orthonormal system.

- 1) Show that the domain of f is: $]0, +\infty[$.
- 2) Find the limits of *f* at the end points of the domain.
- 3) Study the variations of *f* and sketch its table of variation.
- 4) Solve the equations: f(x) = 0 & f(x) = -ln2, and draw (C).

(5.5 points)

Consider the function f defined on $\mathbb{R} =] - \infty, +\infty [by : f(x) = \frac{e^x}{e^{x-x}}.$

PART A:

V-

- 1) Let g be the function defined over $] \infty, +\infty[$ by $g(x) = e^x x 1$
 - a- Find g'(x), sketch the table of variations of g.Deduce that: g(x) > 0.
 - b- Verify that the expression $\frac{e^{x}}{e^{x}-x}$ is defined over: \mathbb{R} .
- 2)
- a- Find the $\lim_{x \to -\infty} f(x) \& \lim_{x \to +\infty} f(x)$. Interpret. Deduce the asymptotes of (C).

b- Show that : $f'(x) = \frac{(1-x)e^x}{(e^x - x)^2}$ and draw the table of variations of f.

3) Let (T) be the representative curve of *h* defined over \mathbb{R} by $h(x) = \frac{1}{e^{x} - x}$.

- i) Show that the axis of abscissa is the asymptote of (T) at the ends of its domain.
- ii) Find h'(x), sketch the table of variations of h and draw (T) in the same system of f.

iii) Study according to the values of the relative position of the curve (C)

W.r.t. (T) .

iv) Calculate the area of region bounded by (C) ,(T) and x=1.

PART B :

The study of the sequence: $U_n = \int_0^n [f(x)] dx$ and the sequence $V_n = U_n - n$.

- a. Verify that: $U_{n+1} U_n = \int_n^{n+1} f(x) dx$, deduce sense of variations of U_n .
- b. Verify that $f(x) = 1 + \frac{x}{e^{x} x}$, and show that: $U_n = n + \int_0^n \frac{x}{e^x x} dx$.
- c. Prove that V_n is increasing.

c- Draw (C).

- d. Assume it is given that for all $x \in]0, +\infty[$ we have: $e^x x \ge \frac{e^x}{2}$ deduce that: $0 < V_n \le \int_0^n 2xe^{-x} dx$.
- e. Calculate: $\int_{0}^{n} 2x e^{-x} dx$, and deduce that: $0 < \lim_{n \to +\infty} V_n \le 2$.

Correction of midyear Exam

-		(5points/40)
	1-	$\overrightarrow{BC}.(\overrightarrow{BA}\wedge\overrightarrow{BD}) = \begin{vmatrix} -1 & -1 \\ -1 & 1 \\ -3 & 0 \end{vmatrix} = \begin{vmatrix} -1 & -1 \\ -3 & 0 \end{vmatrix}$
	= -1(a - 1) + 1[(-a + 1) - 6] + 2(3)	
	= -a + 1 - a - 5 + 6	
	= -2a + 2	
	$Volume = \frac{ -2a+2 }{6} = 5; -a+1 = 15$	
	-a = 14; $a = -14$	
	-a + 1 = -15; $a = 16$	Correct: B (1.5pt)
	$2- 4x^2 + 9y^2 - 8x - 32 = 0$	Correct: A (1.5pt)
	3-	$\lim_{x \to -\infty} [\ln(e^{-2x} - 2e^{-x} + 1) + 2x]$
	$=\lim_{x\to-\infty} [\ln(e^{-2x} - 2e^{-x} + 1) + \ln e^{2x}]$	
	$=\lim_{x \to -\infty} \left[\ln(e^{-2x} - 2e^{-x} + 1) e^{2x} \right]$	
	$=\lim_{x \to -\infty} [\ln(1 - 2e^x + e^{2x})] = \ln 1 = 0$	Correct C (1pt)
	4-	2x-2y-z+5=0
	Correct C (1pt0	

II-		(6pts/40)
1) $A \notin (d)$	since	$x_A = 0$, $t = 0$, $y_A = -1$, $t = 2$
$A \in (p)$	since	0 - 1 + 3 - 2 = 0
(d) lies in (p)	since	$t + (-t + 1) + 1 - 2 = 0 \qquad 0 = 0$

2)
$$N_Q = \overline{V_d} = (1, -1, 0)$$

 $Q: x - y + r = 0$ $(A \in Q)$
 $0 + 1 + r = 0$ $r = -1$
 $Q: x - y - 1 = 0$; $H \in (d)$ since $t = 1$
 $H \in Q$ since $1 - 0 - 1 = 0$
Or $(H) \in (d)$ and $\overline{AH}.\overline{V_d} = 0$
3)
a- Radius of (C) is $AH = \sqrt{1 + 1 + 4} = \sqrt{6}$
b- $X_A = \frac{x_B + x_H}{2}$, $0 = \frac{-1 + 1}{2}$, $y_A = \frac{y_b + y_b}{2} = \frac{-2 + 0}{2} = -1$, $z_A = 3$ Then
 (B) is diametrically opposite to "H"

Equation of tangent (T) to (C) at B:(T) is parallel to (d)x = m + (-1)y = -m - 2, z = 5

4) (
$$\Delta$$
) perpendicular on (P); $\overrightarrow{V_{\Delta}} = \overrightarrow{N_{p}}$ (1, 1, 1) Then Δ :
$$\begin{cases} x = \lambda \\ y = \lambda - 1 \\ z = \lambda + 3 \end{cases}$$

Г

ii) $\lambda = \sqrt{6}$; then B belong to $\Delta, HB = BE = HE$ area: $\frac{EI \times HB}{2} = \frac{\frac{HB \times \sqrt{5}}{2} \times HB}{2} = \frac{\sqrt{432}}{2}$ unit area.

1) $H(6, y) \epsilon(d), \ 2(OM)^2 = (MH)^2; \ 4(x^2 + y^2) = (x - 6)^2 + (y - 6)^2 $		$) = (x - 6)^{2} + (y - y)^{2}$			
Т	hen <mark>3x</mark>	$x^{2} + 4y^{2} + 12x - 36 =$	0 is (C) set o	f <u>M</u> .	
2)		$(C):\frac{(x+2)^2}{16} + \frac{y^2}{12} = 1$	<i>a</i> = 4	$b = 2\sqrt{3}$	center $W(-2,0)$
E	llipse				
Ir	n X' wX	,Y'wY	in x' ox,	y'oy	
A	1(4,0)	A'(-4,0)	A(2,0)	A'(-6,0)	
В	3(0,2√3	$\overline{3}$) $B'(0, -2\sqrt{3})$	B(-2, 2-	$\sqrt{3}$) B'(-2,-	$-2\sqrt{3}$)
F	(2,0)	F'(-2,0)	F(0,0)	F'(-4,0)	
3)		$3x^2 + 4y^2 + 12x - 3$	36 = 0		
6	6x + 8yy' + 12 = 0				
x	:= 0	$4y^2 - 36 = 0$			
		$y^2 = 9$ then $y = \pm 3$			
(<mark>0, 3)</mark> th	en $y'_{(o)} = \frac{-12}{8(3)} = -\frac{1}{2}$			
tl	then equation of tangent $y = -\frac{1}{2}x + 3$				
4)			-		
a)	$l(\frac{6}{2},\frac{12}{2})$ is a point on (T) since $\frac{12}{2} = -\frac{6}{2} + 3$				

Slope of $OI:\frac{\frac{12}{5}}{\frac{6}{5}} = 2$ slope of $(T)=-\frac{1}{2}$ then OI perpendicular on (T)

b)

 $I \in$ to the auxiliary circle R = a = 4 center w(-2, 0) of equation $(x + 2)^2 + y^2 = 16$ Then coordinates of I verify the equation of the circle $I(\frac{6}{5}, \frac{12}{5})$ then $(\frac{6}{5} + 2)^2 + (\frac{12}{5})^2 = 16$ or prove that WI = a = 4.

IV-(13point)	
Part A:	
1) $\lim_{x \to +\infty} g(x) = +\infty \lim_{x \to +\infty} \frac{g(x)}{x}$	$\frac{1}{x} = \lim_{x \to +\infty} \frac{\sqrt{x+1}-1}{x} = 0$ Asymptotic direction parallel to
2) $g'(x) = \frac{1}{\sqrt{x+1}} > 0$; $g(-1) = \frac{1}{\sqrt{x+1}} > 0$; $g(-1) = \frac{1}{\sqrt{x+1}} > 0$	= -1
$x -1 +\infty$	
$g \rightarrow +\infty$	
+1	
3) $g(0) = 0$, $g(x) < 0$ when 1-	$- \le x < 0$, $g(x) > 0$ when $x > 0$
4) Graph	
5) $r(0) = 0 r(2) = 1$	
$a([0,3]) = [0,1] \subset I$	
b) $ g'(x) - \frac{1}{2} = \frac{1}{\sqrt{x+1}} - 1 = \frac{1-\sqrt{x}}{\sqrt{x}}$	$\frac{1}{x+1} = \frac{(1-\sqrt{x+1})(1+\sqrt{x+1})}{\sqrt{x+1}(1+\sqrt{x+1})} = \frac{-x}{\sqrt{x+1}(1+\sqrt{x+1})} < 0$
$ g'(x) \le \frac{1}{2}$ for $x \in [0,3]$, $ g(b)$	$ -g(a) \le k x-a , g(x) \le \frac{1}{2} x $
- c)	2
i. $U_0 = 1 \in [0,3] = I$, $U_n \in [0,3]$	0, 3]
$0 < U_n < 3$ Then $g(0) < g$	$(U_n) < g(3), \ 0 < U_{n+1} < 1 \ \text{then } U_{n+1} \in I$
ii. Since $ g(x) < \frac{1}{2} x $ then $ g(x) < \frac{1}{2} x $	$ U_n < \frac{1}{2} U_n $ then $ U_{n+1} \le \frac{1}{2} U_n $
iii. By mathematical induction U_0	$= 1 \le \frac{1}{20} = 1$
Given $ U_n \leq \frac{1}{2^n}$ show that	$ U_{n+1} \le \frac{1}{2^{n+1}}$
Proof: $ U_{n+1} \le \frac{1}{2} U_n \le \frac{1}{2} \times \frac{1}{2}$	$\left \frac{1}{2^{n+1}}\right U_{n+1} \le \frac{1}{2^{n+1}}, \lim U_n \le \lim \frac{1}{2^n} = 0$
And $U_n \ge 0$ then $\lim_{n \to \infty} U_n$	= 0
n→+∞	

i) Figure is deduced by symmetry about
$$y = -1$$

ii)
$$y = \pm \sqrt{x+1} - 1$$
; $y + 1 = \pm \sqrt{x+1}$

$$y^2 + 2y + 1 = x + 1$$
 then $y^2 + 2y - x = 0$

iii) Parabola since $(y + 1)^2 = x + 1$ then $= Y^2$, find vertex, directrix, parameter.

Equation of tangent at o,
$$2yy' + 2y' - 1 = 0$$
, $y'_{(o)} = \frac{1}{2}$

Slope of normal = -2 equation of normal: y = -2x

Graph of $g(x) \cup h(x) = \pm \sqrt{x+1} - 1$

PARTC:

iv)

1-
$$g(x) > 0$$
 for $x > 0$ then domain of $f(x)$ is $]0, +\infty[$
2- $\lim_{x \to 0} f(x) = \ln(f(0)) = \ln 0 = -\infty$

$$\lim_{x \to +\infty} f(x) = \ln(+\infty) = +\infty$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$$
3-
$$f'(x) = \frac{g'(x)}{g(x)} > 0 \quad g'(x) > 0 \text{ and } g'(x) > 0 \quad , x \in]0, +\infty[$$

$$\frac{x}{f'} \quad + \frac{f'(x)}{f'} \quad + \frac{f'($$

4-

$$f(x) = 0 \quad g(x) = 1 \qquad x = 3: (3, 0)$$

$$f(x) = -\ln 2 \quad \ln(g(x)) = -\ln 2 = \ln \frac{1}{2} \text{ Then } g(x) = \frac{1}{2}, \sqrt{x+1} - 1 = \frac{1}{2} \text{ then } x = \frac{5}{4}$$

$$: (\frac{5}{4}, -\ln 2)$$

Graph of $f(x) = ln(g(x)) = ln(\sqrt{x+1}-1)$

b)
$$h'(x) == \frac{-e^x + 1}{(e^x - x)^2}$$

Graph (T)

c) $f(x) - h(x) = \frac{e^{x} - 1}{e^{x} - x}$, for x > 0,(C) is below (T) & for x < 0,(C) is above (T)

Comon point (0,1)
d) Area=
$$\int_{0}^{1} \frac{e^{x}-1}{e^{x}-x} dx = \ln(e^{x}-x) \frac{1}{0}$$
=0.54 unit area.

PART B:

a.
$$U_{n+1} - U_n = \int_0^{n+1} f(x) dx - \int_0^n f(x) dx = \int_n^0 f(x) dx + \int_0^{n+1} f(x) dx$$
$$= \int_n^{n+1} f(x) dx > o \text{ and } (U_n) \text{ is increasing.}$$

b.
$$f(x) = 1 - \frac{e^x}{e^{x+x}}, \quad U_n = \int_0^n dx + \int_0^n \frac{x}{e^{x-x}} dx = [x]_0^n + \int_0^n \frac{x}{e^{x-x}} dx = n + \int_0^n \frac{x}{e^{x-x}} dx$$
c.
$$V_n = U_n - n + \int_0^n \frac{x}{e^{x-x}} dx - n = \int_0^n \frac{x}{e^{x-x}} dx$$
$$V_{n+1} - V_n = \int_0^{n+1} \frac{x}{e^{x} - x} dx - \int_0^n \frac{x}{e^{x} - x} dx = \int_n^{n+1} \frac{x}{e^{x} - x} dx > 0$$

d.
$$e^x - x - \frac{e^x}{2} > 0, \quad e^x - x > \frac{e^x}{2}, \quad \frac{1}{e^{x-x}} < \frac{2}{e^x} \text{ and then } o < \frac{1}{e^{x-x}} < \frac{2}{e^x}$$

x > 0 then $o < \frac{x}{e^{x} - x} < \frac{2x}{e^{x}}$

$$\begin{aligned} 0 &< \int_0^n \frac{x}{e^x - x} dx \leq \int_0^n 2x e^{-x} ; \quad 0 < \int_0^n \frac{x}{e^x - x} dx \leq \int_0^n 2x e^{-x} dx \\ \text{Then;} \quad 0 < V_n \leq \int_0^n 2x e^{-x} dx = \frac{2n - 2}{e^n} + 2 \\ \text{Then;} \quad 0 < \lim_{+\infty} V_n \leq \lim_{+\infty} \frac{2n - 2}{e^n} + 2 ; \quad 0 < \lim_{+\infty} V_n \leq 2 \end{aligned}$$

