Grade 9

I- ($\mathbf{1 . 5} \mathrm{pts}$)

Indicate the correct answer with justification:

No"	Statements	A	B	C
1	$\frac{-(x-5)}{x^{2}+1}$ is positive for	$x>-1$	$x>5$	$x<5$
2	The area of a garden is $90 \mathrm{~cm}^{2}$. If we reduce this area by a scale $\frac{1}{3}$, then it becomes	$270 \mathrm{~cm}^{2}$	$10 \mathrm{~cm}^{2}$	$30 \mathrm{~cm}^{2}$
3	If $\mathrm{F}(\mathrm{x})=3$ for every x ,then $\mathrm{F}(2010)=$	2010	3	The value is not defined
4	$\operatorname{Sin}^{2} 20^{\circ}-\cos ^{2} 70^{\circ}=$	1	0	-1

II- ($\mathbf{1 . 2 5} \mathbf{~ p t s) ~}$

Given $x=(\sqrt{3}+1)(\sqrt{2})^{-1}$.

1) Calculate x^{2} and $\frac{1}{x^{2}}$.
2) Deduce that $x^{2}+\frac{1}{x^{2}}$ is a positive integer.

III- (2.75 pts)

1) Develop and reduce ($x-2$) (4-x).
2) Let $\mathrm{A}(\mathrm{x})=\frac{(x-2)-\left(x^{2}-4 x+4\right)}{-x^{2}+6 x-8}$.
a) For which values of x is $\mathrm{A}(\mathrm{x})$ defined?
b) Show that $\mathrm{A}(\mathrm{x})=\frac{x-3}{x-4}$.
c) Evaluate $\mathrm{A}(\mathrm{x})$ for $\mathrm{x}=0$ and for $\mathrm{x}=2$.
d) Solve $\mathrm{A}(\mathrm{x})=1$.

IV- (2.5 pts)

Mariam bought 5 books and 2 pens for 52000 LL. If she bought 4 books of the same quality after their price was increased by 5%, and she bought 3 pens of the same previous quality after their price was decreased by 10%, then Mariam would pay 44700 LL.

1) Show that the paragraph above is transformed to $\left\{\begin{array}{l}5 x+2 y=52000 \\ 14 x+9 y=149000\end{array}\right.$
2) Calculate the initial prices of one book and one pen.

V- (2.5 pts)

The adjacent figure represents the increasing cumulative frequency of the scores (over 20) for the students of Grade 9 in a math test.

1) What is the total number of students?
2) Construct a table of frequency.
3) Calculate the mean score of the class.
4) What is the percentage of students who passed the test?

VI- (4.5 pts)

In an orthonormal system x'0x; y'oy, given the points A $(1 ; 2)$ and $B(2 ; 4)$, let (d) be the straight line of slope $-\frac{1}{2}$ and passing through the point A .

1) Verify that the equation of (d) is $\mathrm{y}=-\frac{x}{2}+\frac{5}{2}$.
2) Plot A and B, and trace (d).
3) Let (d^{\prime}) be the straight line passing through the point A perpendicular to (d).
a) Find the equation of (d').
b) Deduce that O belongs to (d^{\prime}).
c) Draw (d').
4) Show that A, O and B are collinear.
5) (d) cuts ($x^{\prime} x$) in E.
a) Construct point F the image of B by the translation $\overrightarrow{\boldsymbol{E O}}$.
b) Show that FBEO is a rhombus.
6) (C) is the circle of centre O and tangent to (d).
a) Calculate the radius of (C).
b) Draw (C).
7) (d') cuts (C) in another point D . Find the equation of line (L) passing through the point D and parallel to x-axis.
8) Deduce the acute angle α between (L) and (d').

VII- (4.5 pts)
(C) is a semi circle of diameter [AB] , center O, and radius R. I is a point on [AB) outside [AB] such that $\mathrm{BI}<\mathrm{R}$. The tangent from I to (C) cuts it in M.

1) Draw the figure.
2)

a) Show that the 2 triangles IBM and IAM are similar.
b) Deduce that $\mathrm{IM}^{2}=\mathrm{IB}$.IA.
3) The perpendicular on (AB) at O cuts (AM) and (BM) in H and K respectively, (BH) cuts (AK) in J.
a) What is the nature of the triangle ABM ? Justify.
b) Show that J belongs to (C).
4) Show that $\mathrm{A}, \mathrm{O}, \mathrm{M}$ and K belong to the same circle whose diameter is to be determined.
5) N is the midpoint of $[B K]$.
a) Find the locus of N as I varies.
b) Show that (NO) is the perpendicular bisector of [BJ].

