Subject: Mathematics

Grade 9

I- (1.5 pts)

Indicate the correct answer with justification:

No"	Statements	А	В	С
1	$\frac{-(x-5)}{x^2+1}$ is positive for	x >-1	x > 5	x < 5
2	The area of a garden is 90cm^2 . If we reduce this area by a scale $\frac{1}{3}$, then it becomes	270 cm^2	10 cm^2	30 cm^2
3	If $F(x)=3$ for every x ,then $F(2010)=$	2010	3	The value is not defined
4	$\sin^2 20^{\circ} - \cos^2 70^{\circ} =$	1	0	-1

II- (1.25 pts)

Given $x = (\sqrt{3} + 1)(\sqrt{2})^{-1}$.

- 1) Calculate x^2 and $\frac{1}{x^2}$.
- 2) Deduce that $x^2 + \frac{1}{x^2}$ is a positive integer.

III- (2.75 pts)

1) Develop and reduce
$$(x-2) (4-x)$$
.

2) Let A(x) =
$$\frac{(x-2) - (x^2 - 4x + 4)}{-x^2 + 6x - 8}$$
.

a) For which values of x is A(x) defined?

b) Show that
$$A(x) = \frac{x-3}{x-4}$$

- c) Evaluate A(x) for x=0 and for x=2.
- d) Solve A(x) = 1.

IV- (2.5 pts)

Mariam bought 5 books and 2 pens for 52000 LL. If she bought 4 books of the same quality after their price was increased by 5%, and she bought 3 pens of the same previous quality after their price was decreased by 10%, then Mariam would pay 44700 LL.

1) Show that the paragraph above is transformed to
$$\begin{cases} 5x + 2y = 52000 \\ 14x + 9y = 149000 \end{cases}$$

2) Calculate the initial prices of **one** book and **one** pen.

V- (2.5 pts)

The adjacent figure represents the increasing cumulative frequency of the scores (over 20) for the students of Grade 9 in a math test.

- 1) What is the total number of students?
- 2) Construct a table of frequency.
- 3) Calculate the mean score of the class.
- 4) What is the percentage of students who passed the test?

VI- (4.5 pts)

In an orthonormal system x'0x; y'oy, given the points A (1; 2) and B (2; 4), let (d) be the straight line of slope $-\frac{1}{2}$ and passing through the point A.

- 1) Verify that the equation of (d) is $y = -\frac{x}{2} + \frac{5}{2}$.
- 2) Plot A and B, and trace (d).
- 3) Let (d') be the straight line passing through the point A perpendicular to (d).
 - a) Find the equation of (d').
 - b) Deduce that O belongs to (d').
 - c) Draw (d').
- 4) Show that A, O and B are collinear.
- 5) (d) cuts (x'x) in E.
 - a) Construct point F the image of B by the translation \overrightarrow{EO} .
 - b) Show that FBEO is a rhombus.
- 6) (C) is the circle of centre O and tangent to (d).
 - a) Calculate the radius of (C).
 - b) Draw (C).
- 7) (d') cuts (C) in another point D. Find the equation of line (L) passing through the point D and parallel to x-axis.
- 8) Deduce the acute angle α between (L) and (d').

VII- (4.5 pts)

(C) is a semi circle of diameter [AB], center O, and radius R. I is a point on [AB) outside [AB] such that BI< R. The tangent from I to (C) cuts it in M.

- 1) Draw the figure.
- 2)
- a) Show that the 2 triangles IBM and IAM are similar.
- b) Deduce that $IM^2 = IB.IA$.
- 3) The perpendicular on (AB) at O cuts (AM) and (BM) in H and K respectively, (BH) cuts (AK) in J.
 - a) What is the nature of the triangle ABM? Justify.
 - b) Show that J belongs to (C).
- 4) Show that A, O, M and K belong to the same circle whose diameter is to be determined.
- 5) N is the midpoint of [BK].
 - a) Find the locus of N as I varies.
 - b) Show that (NO) is the perpendicular bisector of [BJ].